News
The main advantage of using PCA for anomaly detection, compared to alternative techniques such as a neural autoencoder, is simplicity -- assuming you have a function that computes eigenvalues and ...
Principal Component Analysis (PCA) is widely used in data analysis and machine learning to reduce the dimensionality of a dataset. The goal is to find a set of linearly uncorrelated (orthogonal) ...
Tuesday, October 28: Often researchers are faced with data in very high dimensions (e.g. too many predictors for a regression model), or must come up with a rule to classify data in pre-determined ...
A good way to see where this article is headed is to take a look at the screen shot of a demo program shown in Figure 1. The demo sets up a dummy dataset of six items: [ 5.1 3.5 1.4 0.2] [ 5.4 3.9 1.7 ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results